(4.5*(10^-4)x)-(.295x)=0

Simple and best practice solution for (4.5*(10^-4)x)-(.295x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4.5*(10^-4)x)-(.295x)=0 equation:



(4.5(10^-4)x)-(.295x)=0
We add all the numbers together, and all the variables
(4.5(10^-4)x)-(+.295x)=0
We get rid of parentheses
(4.5(10^-4)x)-.295x=0
We calculate terms in parentheses: +(4.5(10^-4)x), so:
4.5(10^-4)x
We multiply parentheses
40x^2-16x
Back to the equation:
+(40x^2-16x)
We add all the numbers together, and all the variables
-0.295x+(40x^2-16x)=0
We get rid of parentheses
40x^2-0.295x-16x=0
We add all the numbers together, and all the variables
40x^2-16.295x=0
a = 40; b = -16.295; c = 0;
Δ = b2-4ac
Δ = -16.2952-4·40·0
Δ = 265.527025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16.295)-\sqrt{265.527025}}{2*40}=\frac{16.295-\sqrt{265.527025}}{80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16.295)+\sqrt{265.527025}}{2*40}=\frac{16.295+\sqrt{265.527025}}{80} $

See similar equations:

| (4.5*10^-4x)-(.295x)=0 | | 8(2f-3)=4(4f=8) | | (4.5*10^-4x)-((.295x))=0 | | 5x=120-x | | ((4.5*10^-4)x)-((.295x))=0 | | ((4.5x10^-4)x)-((.295x))=0 | | (3x^2+4)(2x-3)=0 | | ((4.5x10^-4)x)=(.295x) | | N/2-1+n/5=-1/2 | | (-x+2)=-15 | | 4(x+3)=3x–10 | | -20+x=5 | | 3/32=-y/8 | | 3(3x-6=15 | | 5x-5+6x=-27 | | x2+9x=-14 | | 5x+6/6=x/3 | | Y=3x^ | | -4(2n-4)=28 | | 6(x+4)+9=-9 | | 2y^2-12y-20=0 | | 5-3(x+5)+3=8 | | 0+x=5 | | -9(2+r)=54 | | -4p+1=25 | | 3(5s+1)+2=50 | | 16(5)-4y=32 | | z+1/5=3/20 | | 3(x+8)=3(8+x) | | 5a/4-3a/5=13/2 | | 2(5t+1)-12=t-(t+9) | | 5(5t+1)-7=t-(t-1) |

Equations solver categories